1. To know by the end of section 5.1:
(a) what an infinite sequence is
(b) how to read and use sequence notation
(c) what it means to "Find a formula for the nth term", and how to find it
(d) what it means for a sequence to converge or diverge
(e) different limit techniques for determining if a sequence converges or diverges, including L'Hopital's rule
(f) what n ! means
(g) terms for describing a sequence: bounded, monotone, increasing, decreasing
2. For each sequence below, write the first 5 terms and graph them.

3. Find a formula for 2 (c).

4. Definition: The symbol n ! or " n factorial" means

$$
\begin{equation*}
n!=n(n-1)(n-2) \cdots \tag{2}
\end{equation*}
$$

and 0 ! $=1$
5. Find the limit of each of the following sequences or show that it diverges. (a) $\left\{\pi+\frac{100}{n}\right\}$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \pi+\frac{100}{n}=\pi+0=\pi \\
& \text { (b) } a_{n}=\frac{3^{n}}{n!}=\underbrace{\frac{3 \cdot 3 \cdot \cdots \cdot 3}{n \cdot(n-1) \cdot \cdots \cdot 1} \quad \therefore \lim _{n \rightarrow \infty} \frac{3^{n}}{n!}=}_{\pi}=23=2,
\end{align*}
$$

product of $\frac{3}{n}, \frac{3}{n-1}, \ldots$ is small

$$
\begin{aligned}
& \text { (c) }\left\{\frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}}\right\} \\
& \lim _{n \rightarrow \infty} \frac{100 n^{2}+\sqrt{n}}{n-3 n^{2}} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{100+\frac{1}{n^{3 / 2}}}{\frac{1}{n}-3}=\frac{100+0}{0-3}=-\frac{-100}{3} \\
& \text { (d) }\left\{\frac{n^{2}}{10^{n}}\right\} \\
& \lim _{n \rightarrow \infty} \frac{n^{2}}{10^{n}} \frac{L^{\prime} H}{\frac{\infty}{\infty}} \lim _{n \rightarrow \infty} \frac{2 n}{\left(\ln (0) 10^{n}\right.} \frac{L^{\prime} H}{\frac{\infty}{\infty}}=\lim _{n \rightarrow \infty} \frac{2}{(\ln 10)^{2} 10^{n}}=(0) \\
& \text { (e) } a_{n}=\left(1+\frac{1}{n}\right)^{n} \\
& \lim _{n}=n \ln _{n}\left(1+\frac{1}{n}\right) \\
& \lim _{n \rightarrow \infty} \ln _{n}=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}} \frac{L^{\prime} H}{\overline{0}} \lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \cdot \frac{-1 / n^{2}}{-1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \\
& \therefore \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} e^{\ln a_{n}}=e^{\prime}=e=\frac{1}{1+0}
\end{aligned}
$$

