SEction 5.2: SERIES

Things to know by the end of this section
a. how to use sigma notation with facility
d. what it means to say a series converges.
b. the meaning of a series, especially as compared to a sequence (from §5.1)
e. what a geometric series is and how to determine whether or not it converges.
c. the meaning of a sequence of partial sums of a series and how to find it.
f. what a telescoping series is and how to determine whether or not it converges.

1. An infinite series is

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots
$$

The sequence of its partial sums is
2. For each series below, expand the sigma notation and then compute and simplify the first 4 partial sums $S_{1}, S_{2}, S_{3}, S_{4}$. (Use a calculating device to get a decimal, if desired.)
(a) $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5^{n}}$
(d) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+2}$
3. Complete the bulleted lines below. Definition: The series $\sum_{n=1}^{\infty} a_{n}$

- converges if
- diverges if

4. The series in 2(a) is a geometric series. Its k th partial sum is $S_{k}=\sum_{n=1}^{k}\left(\frac{2}{3}\right)^{n}$. Below, write out S_{k} without sigma notation, multiply by $2 / 3$, then subtract, and then cancel as many terms as possible:

$$
\begin{aligned}
S_{k} & = \\
\frac{2}{3} S_{k} & =
\end{aligned}
$$

$$
\left(1-\frac{2}{3}\right) S_{k}=\frac{1}{3} S_{k}=
$$

This has led to a closed formula for S_{k} :

$$
S_{k}=
$$

Therefore the infinite series converges to $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=\lim _{k \rightarrow \infty} S_{k}=\square$.
5. Do the same for the geometric series in 2(c).

