Things to know by the end of this section
a. how to use sigma notation with facility
b. the meaning of a series, especially as compared to a sequence (from §5.1)
c. the meaning of a sequence of partial sums of a series and how to find it.
d. what it means to say a series converges.
e. what a geometric series is and how to determine whether or not it converges.
f. what a telescoping series is and how to determine whether or not it converges.

1. An infinite series is

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots
$$

The sequence of its partial sums is

$$
\left.\begin{array}{l}
S_{1}=a_{1} \\
S_{2}=a_{1}+a_{2} \\
S_{3}=a_{1}+a_{2}+a_{3} \\
S_{k}=a_{1}+a_{2}+\ldots+a_{k}
\end{array}\right\} \quad S_{k}=\sum_{n=1}^{k} a_{n}
$$

2. For each series below, expand the sigma notation and then compute and simplify the first 4 partial sums $S_{1}, S_{2}, S_{3}, S_{4}$. (Use a calculating device to get a decimal, if desired.)

$$
\begin{aligned}
& \text { (a) } \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots \\
& S_{1}=\frac{2}{3}, S_{2}=\frac{2}{3}+\frac{4}{9}=\frac{10}{9}, S_{3}=\frac{10}{9}+\frac{8}{27}=\frac{38}{27)} \\
& S_{4}=\frac{38}{27}+\frac{16}{81}=\frac{130}{81} \\
& \text { (b) } \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots \\
& S_{1}=\frac{1}{2}, S_{2}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}, S_{3}=\frac{2}{3}+\frac{1}{12}=\frac{3}{4}, \\
& S_{4}=\frac{3}{4}+\frac{1}{20}=\frac{4}{5} \\
& \text { (c) } \sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n}=-\frac{1}{5}+\frac{1}{5^{2}}-\frac{1}{5^{3}}+\frac{1}{5^{4}}-\cdots \\
& S_{1}=-\frac{1}{5}, S_{2}=-\frac{1}{5}+\frac{1}{25}=-\frac{4}{25)} \\
& S_{3}=-\frac{4}{25}-\frac{1}{125}=\frac{-21}{125}, S_{4}=-\frac{21}{125}+\frac{1}{625}=\frac{-104}{625}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \sum_{n=1}^{\infty} \frac{n}{n^{2}+2}=\frac{1}{1+2}+\frac{2}{4+2}+\frac{3}{9+2}+\frac{4}{16+2}+\ldots \\
& S_{1}=\frac{1}{3}, S_{2}=\frac{1}{3}+\frac{2}{6}=\frac{2}{3}, \quad S_{3}=\frac{2}{3}+\frac{3}{11}=\frac{31}{33} \\
& S_{4}=\frac{31}{33}+\frac{4}{18}=\frac{31}{33}+\frac{2}{9}=\frac{115}{99}
\end{aligned}
$$

3. Complete the bulleted lines below. Definition: The series $\sum_{n=1}^{\infty} a_{n}$

- omenergesif $\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty} \sum_{m=1}^{k} a_{n} e^{a}$ exist and is finite - diverges if $\lim _{k \rightarrow \infty} S_{k}$ does not exist or equals $\pm \infty$

4. The series in 2(a) is a geometric series. Its k th partial sum is $S_{k}=\sum_{n=1}^{k}\left(\frac{2}{3}\right)^{n}$. Below, write out S_{k} without sigma notation, multiply by $2 / 3$, then subtract, and then cancel as many terms as possible:
subtracts

$$
\begin{aligned}
S_{k} & =\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots \cdot+\left(\frac{2}{3}\right)^{k} \\
\frac{2}{3} S_{k} & =\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots+\left(\frac{2}{3}\right)^{k}+\left(\frac{2}{3}\right)^{k+1}
\end{aligned}
$$

$$
\left(1-\frac{2}{3}\right) S_{k}=\frac{1}{3} S_{k}=\frac{2}{3}-\left(\frac{2}{3}\right)^{k+1}
$$

This has led to a closed formula for S_{k} :

$$
S_{k}=3\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{k+1}\right)
$$

Therefore the infinite series converges to $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=\lim _{k \rightarrow \infty}$
5. Do the same for the geometric series in 2(c).
$S_{k}=-\frac{1}{5}+\left(-\frac{1}{5}\right)^{2}+\cdots+\left(\frac{1}{5}\right)^{h}$

$$
=3\left(\frac{2}{3}-0\right)=2
$$

\square

$$
\begin{aligned}
& -\frac{1}{5} s_{k}=\left(-\frac{1}{5}\right)^{2}+\cdots+\left(-\frac{1}{5}\right)^{k}+\left(\frac{-1}{5}\right)^{k+1} \\
& \int_{=6 / 5}^{\left(1-\left(-\frac{1}{5}\right)\right)} S_{k}=-\frac{1}{5}-\left(\frac{-1}{5}\right)^{k+1} \\
& \therefore s_{k}=\frac{5}{5}\left(-\frac{1}{5}-\left(-\frac{1}{5}\right)^{k+1}\right) \\
& S_{k}=-\frac{1}{5}+\left(-\frac{1}{5}\right)^{2}+\cdots+\left(-\frac{1}{5}\right)^{k} \\
& 2 \\
& \therefore \sum_{n=1}^{\infty} \frac{(1)^{n}}{5^{n}}=\frac{5}{6}\left(-\frac{1}{5}-0\right)=-\frac{1}{6}
\end{aligned}
$$

