1. The Divergence Test:
$\sum_{n=1}^{\infty} a_{n}$ diverges is $\lim _{n \rightarrow \infty} a_{n}=\binom{$ anything other }{ than zero }
2. The Integral Test: for $\sum_{n=1}^{\infty} a_{n}$, assuming $a_{n} \geq 0$,
a_{n} decreases, $a_{n}=f(n)$ for $f(x)$ cuntiviuns
\& decreasing,

$$
\sum_{n=1}^{\infty} a_{n} \quad \int_{N}^{\infty} f(x) d x
$$

both converge or both diverge
3. For each series below, find the limit if the terms of the series and determine if the Divergence Test
applies. If the test applies, draw a conclusion. applies. If the test applies, draw a conclusion.
(a) $\sum_{n=1}^{\infty} \frac{n}{40 n+30}$

$$
\lim _{n \rightarrow \infty} \frac{n}{40 n+30} \xlongequal{\frac{2}{=}} \lim _{n \rightarrow \infty} \frac{1}{40}=\frac{1}{40}
$$

\therefore series diverge
(0) $\sum_{n=1}^{\infty} \frac{n}{n+n^{2}+30} \quad \lim _{n \rightarrow \infty} \frac{n}{40 n^{2}+30} \stackrel{L^{\prime} / 4}{=} \lim _{n \rightarrow \infty} \frac{1}{80 n}=0$
no conclusion (test doer not apply)
(c) $\sum_{n=1}^{\infty} \lim _{n \rightarrow \infty} 8^{\left(n^{-2}\right)}=8^{\left(\lim _{n \rightarrow \infty} 1 / n^{2}\right)}=8^{0}=1$
\therefore series diverge
4. Why is the following claim FALSE?: "The series $\sum_{n=1}^{\infty} a_{n}$ converges because $a_{n} \rightarrow 0$ as $n \rightarrow \infty$."
(1) by example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges $b_{n=1}+\lim _{n \rightarrow \infty} \frac{1}{n}=0$
(2) generally, because $a_{n} \rightarrow 0$ but perhaps not fast enough!
5. Apply the integral test to $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, assuming $p>1$.

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty}\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left[\frac{t^{1-p}}{1-p}-\frac{1}{1-p}\right] \\
& =0+\frac{1}{p-1}=\frac{1}{p-1} \therefore \text { series } \sum_{n=1}^{\infty} \frac{1}{n p} \text { enrages } \\
& 1-p<0
\end{aligned}
$$

6. Apply the integral test to $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, assuming $0<p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges if } p>1 \text { and diverges if } p \leq 1 .
$$

Apply the above rule about p-series to determine whether the series below converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{1.56}} \quad p=1.56>1 \quad \therefore$ converges
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{99 / 100}} \quad p=\frac{99}{100}<1 \quad \therefore$ diverges

