
SECTION 5.3: DIVERGENCE AND INTEGRAL TESTS

1. The Divergence Test:

2. The Integral Test:

3. For each series below, find the limit if the terms of the series and determine if the Divergence Test

applies. If the test applies, draw a conclusion.
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4. Why is the following claim FALSE?: “The series
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an converges because an ! 0 as n ! 1.”

5. Apply the integral test to
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, assuming p > 1.

6. Apply the integral test to
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, assuming 0 < p  1.

7. p-series convergence
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converges if p > 1 and diverges if p  1.

Apply the above rule about p-series to determine whether the series below converge or diverge.
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