SOLUTIONS

SECTION 5.3: DIVERGENCE AND INTEGRAL TESTS

1. The Divergence Test:

4. Why is the following claim FALSE?: "The series
$$\sum_{n=1}^{\infty} a_n$$
 converges because $a_n \to 0$ as $n \to \infty$."
(1) by example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges but $\lim_{n \to \infty} \frac{1}{n} = 0$
(2) generally, because $a_n \to 0$ but perhaps not fast
(3) Apply the integral test to $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$, assuming $p > 1$.
(4) $\int_{1}^{\infty} \frac{1}{n} dx = \lim_{n \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{+} = \lim_{n \to \infty} \left[\frac{t^{-p}}{1-p} - \frac{1}{1-p} \right]_{1}^{+}$
(5) Apply the integral test to $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$, assuming $p > 1$.
(5) $\int_{1}^{\infty} \frac{1}{n} dx = \lim_{n \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{+} = \lim_{n \to \infty} \left[\frac{t^{-p}}{1-p} - \frac{1}{1-p} \right]_{1}^{+}$
(5) Apply the integral test to $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$, assuming $0 .
(2) $\int_{1}^{\infty} \frac{1}{n} dx = \lim_{n \to \infty} \left[\lim_{n \to \infty} \frac{1}{1-p} - \frac{1}{1-p} - \frac{1}{1-p} \right]_{1}^{+}$
(4) $\lim_{n \to \infty} \frac{1}{1-p+1} \int_{1}^{1} = \lim_{n \to \infty} \frac{t^{+p}}{1-p} - \frac{1}{1-p} = \frac{1}{1-p}$
(5) $\lim_{n \to \infty} \frac{1}{1-p+1} \int_{1}^{1} = \lim_{n \to \infty} \frac{t^{+p}}{1-p} - \frac{1}{1-p} = \frac{1}{1-p}$
(5) $\lim_{n \to \infty} \frac{1}{1-p+1} \int_{1}^{1} = \lim_{n \to \infty} \frac{t^{+p}}{1-p} - \frac{1}{1-p} = \frac{1}{1-p}$
(5) $\lim_{n \to \infty} \frac{1}{1-p+1} \int_{1}^{1} = \lim_{n \to \infty} \frac{t^{+p}}{1-p} - \frac{1}{1-p} = \frac{1}{1-p}$
(6) $\lim_{n \to \infty} \frac{1}{1-p+1} \int_{1}^{1} = \lim_{n \to \infty} \frac{t^{+p}}{1-p} - \frac{1}{1-p} = \frac{1}{1-p}$
(7) peries convergence$

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1 \text{ and diverges if } p \le 1.$$

Apply the above rule about *p*-series to determine whether the series below converge or diverge.

(a) $\sum_{n=1}^{\infty} \frac{1}{n^{1.56}}$ p = 1.56 > 1 : Converges

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^{99/100}}$$
 $p = \frac{99}{100} < 1$ **diverges**