Worksheet: Does the series converge or diverge?

For each of the following 13 infinite series, determine whether it converges or diverges.
Justify your statement using the following tests or known series:

- geometric series
- telescoping series
- p-series
- divergence test
- integral test
- comparison test
- limit comparison test

In many cases, there is more than one correct answer.
A. $\quad \sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$
B. $\quad \sum_{n=1}^{\infty} 2^{n}$
C. $\quad \sum_{n=1}^{\infty} \frac{n}{2^{n}}$
D. $\quad \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$
E. $\quad \sum_{n=1}^{\infty} \frac{n-4}{n^{3}+2 n}$
F. $\quad \sum_{n=2}^{\infty} \frac{1+\cos (n)}{e^{n}}$
G. $\quad \sum_{n=3}^{\infty} \frac{n^{2}}{\sqrt{n^{3}-1}}$
H. $\quad \sum_{n=1}^{\infty} \frac{n^{3}}{\left(n^{4}-3\right)^{2}}$
I. $\quad \sum_{n=1}^{\infty}(-1)^{n} 3^{-n / 3}$
J. $\quad \sum_{n=2}^{\infty} \frac{|\sin (n)|}{n}$
K. $\quad \sum_{n=2}^{\infty} \frac{1}{n!}$
L. $\quad \sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
M. $\quad \sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$

Observation and Question. In every case above you could use a computer to find S_{1000}, the partial sum of the first thousand terms. In which cases could you find the exact sum of the infinite series?

